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REGIONS OF STABILITY OF FEL OSCILLATORS

B. Levush and T. M. Antoansen, Jr.
Laboratory for Plasma and Fusion Energy Studies
University of Maryland

N ABSTRACT
4The stability of single mode operation of FEL oscillators 1is
investigated. We consider two models of an untapered FEL oscillator.
The first model is called the klystron model. In it the FEL interaction
occurs at two points: a prebunching point and an energy extraction point.
In this model the nonlinear electron dynamics are solvable exactly
leading to a complex delay equation for the wave fields. The stability

- of single mode operation can then be determined easily as a function of
single pass gain, energy mismatch-frequency, and the difference between
the group velocity of the radiation and the beam velocity. The second,
more realistic model has a distributed 1interaction region of finite
length. Stability of single mode operation in this device must be
determined numerically. The results of the models in low gain regime
will be compared and the parameter regimes where stable;single mode

operation is possible will be determined.

I. INTRODUCTION
Many applications of free electron lasers require a coherent single
frequency output. However, the FEL ianteraction region 1is large and in
oscillators many modes of the interaction cavity are linearly unstable.
Therefore it 1s desirable to know under what circumstances nonlinear
operation in a single frequency mode will occur. This problem has been

1,2,3

considered previously by a numher of authors. Our work closely

parallels that of Refs. (1) and (2). Specifically, we consider two cases
in which reduction in computation 1is achieved by considering a model
P system or by exploiting a small parameter.

We begin with the one pendulum equation describing the space and
time evolution of the particle energy and phase and signal field in an

FEL,

) d 9 -1
(ﬁ +v, ;;)w = -8y @v,) 3—7—; (v, ) (1)




JES . — —— R T W O TV YR F T T T LY U U WU UV W WOV Ty e VRN )

2 Y
y
R ~ 4
3 . A 1, gA -1y N
Er zaz)(GY YD) -5 {“”‘[;Lc‘z'e +-‘:‘?e 11, (2) 3
S 9y qA_ Mg ) o
‘ 21( T az) R K< ">, (3) )

where ¥ and 8y are a particle phase and energy mismatch, and A(z,t) 1is

the complex amplitude of the signal field. The definition of the other :V
quantities appearing in Eqs. (1)-(3) follows: w and k, are the wave 3}
frequency and wavenumber, j is an effective current density, vz(Yr) is :\
the mean beam speed, for the case considered here Yr is a constant and ;k

b

gives the energy of a particle exactly resonant with the carrier signal.

The undulator parameter is defined by

B!

qu(z) ‘::

K= - _ oy

mc'y . et

r ¢

Since we are considering osclllators it is necessary to augment the E;

¥t

wave equation (3) with a boundary condition describing the return path of iy
the radiation, sy
O

A(z=0, t) = RA(z=L, t-L/vg) , (4) B

where R 1s the combined reflection coefficient for the two mirrors, L is :&
the separation between mirrors and vg=krc2ﬁn is the group velocity of the :5:
. (W)

radiation. (Note that R 1is a complex number.) :f:
' .

We now make two transformations to Eqs. (1)-(3). The first {is X
simply to normalize all the variables. Specifically we introduce, .
(1}

p =&y — , (5a) W

eyl - l)3/2 "

T S?

2 il

~ L .

a= (qA } (u /c) K . (Sb) o

¥p ol- Mt tl

me 2V ﬂﬁ

o,

and &}
‘ £ = z/L T o=/l (5¢) A

Second, we define a new coordinate system moving with the mean beam speed AW
£ =¢ (6a) ‘

T =1 -8, (6b) A

- where B,-vg/vz 13 the ratio of the radiation group velocity to the mean XN

beam speed. With these changes the governing equations become, )

. . , y v
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)
f‘.» with the boundary condition
:‘:{ a(0,t7) =~ Ra(1, 7 = (148)) . (10)
:g‘ The function X(E)=Aw(z)/Awo gives the profile of the coupling coefficient
Rty between particles and fields. We note that the system of equations (7)-
- (10) has four dimensionless parameters: the normalized beam current
N
3.';5 T - L% k2
L% 1 c 2,02 _ ,\3/2°
oy A B,(r. - D
where IA=mc3/q-1.7x104 Amps, the relative velocities B,, the reflection
Py
7’: coefficient R, and the injection momentum p(E“=0).
S :
: In the remainder of this paper we will consider two ways this system
"y can be further simplified.
izi'
)
"’ II. XLYSTRON MODEL
) .
::! In the klystron modelz"' one assumes a specific form for the profile
N of the coupling coefficient,
A X(E) = 6(E7) +8GE° - 1) .
:" . Physically, this models an FEL with two short interaction regions
W
‘5' separated by a drift space. 1In the first interaction region, £ “=0,
)
G particles receive a kick in energy (p) depending on their entrance phase
and the strength of the signal field a(£=0,t”). The particles then bunch
ty
:;::: in phase as they traverse the drift space producing a coherent current
k)
::l‘:; source which amplifies the radiation at the second interaction region.
)
d The equations of motion describing this process can be solved exactly
%..“l ylelding an expression for the output radifation field for a given input
W, .
:-.0': field. Inserting this expression in the feedback boundary condition
.‘::S produces the following two time delay equationmns,
:l:. o - -
' ¢ a(0,t°) = R{a(0, t°-2) +1 —;-e i"(O)a(o. - (18 )0} , (1)
e where ~ 31, v - as )]
St n =

Ta(0, *° - (l+6*))] ’
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with J, a Bessel function.

Physically, the first term on the right-hand side of Eq. (1l1)
represents the decay of the circulatng radiation which in our variables
takes two units of time to complete one circuit of the resonator. The
second term describes the amplification of the radiation due to the beam.
Tre delay in this case 1is (148,), the "one" coming from the return trip
of the radiation and the "8_" coming from the time the particles take to-
traverse the drift region.

For equal beam and radiation speeds (B, ,=1) Eq. (1l1) becomes a
simple return map in which each time slice of the radiation field evolves
independently of 1its neighbor depending only on the value of the
radiation field two units of time in the past. This would also be the
case 1if we had set B +=1 in Eq. (9) without 1ntroducing the klystron
model. The function n(IaI) in this case would be replaced by some other

transcendental function. However, as shown by Fiegenbaum5

the behavior
of all such return maps with quadratic maxima 1s wuniversal. "In
particular, depending on beam current the sequence of field values
a(0,t-2n) may converge to a single value (single mode operation), or a
periodic sequence, or for sufficiently high current a chaotic sequence.
We note that the return map model 1is only appropriate for beam currents
low enough to produce a sequence of constant values for a(b,r). This is
because even 1f the sequence converges to a period two or higher orbit
the function a(0,T) must necessarily have a discontinuity. In which
case, no matter how small 1-8* is since it multiplies the time derivative
of a(0,t) in Eq. (9) it can not be neglected. Thus, the two time delay,
Eq. (11), is useful in that it allows for an assessment of the effects of
finite slippage, 1.e., 1-8,#0.

The stability of a single frequency nonlinear mode 1is determined as
follows. We write the field in terms of an equilibrium value and a
perturbation »

a(t) = exp(-imof)[ao + §a(t)]
where ag 1is the constant amplitude of the single mode with frequency g
and Sa(t)yvexp(-iwt) is the perturbation. The frequency and amplitude in
equilibrium satisfy 24w - 1e
1=fe 2+ze On(lah] . (12)
where 00-(n/2)+(1+ﬁ*)w0-p(0). Thus, for a given current I, reflectivity

ca RO OASACNGACACNSIOAORRAACACAARALNG
BN t’l‘t'»“l“?t‘u AT OO X M M e R WL M o T R e



-

LT T WY YW vvwwmwvwmmmmmmmmw

.:f LA

‘3'."-
i pr
At ’

Lo P

:»:.: R, and injection momentum p(0), Eq. (lZ)lis a transcendental relation
0 . determining the field amplitude ag and frequency @5 The fquilibrium
;‘.;‘ ' relation 1is readily solved in the low gain regime where both I and v=1-R
‘g‘; . are small. One finds mo-rmr+6m0 with .
" . ‘i& = coseo:\(|aol) and Sw, = - % 31“90;‘“30') .
‘."2. Thus, the frequency is essentially that of a cavity mode with a small
:":" shift proportional to the beam current, and the field amplitude 1is
=:0“.| determined by the gain and the ratio of the transmission coefficient (v)
?‘:?::. to the current.

Linearizing the delay equation results in the following dispersion
:\'. relation for the frequency w of the perturbation
E‘ {7214y - zR[(1+g)e“‘-1]} x {(e_zm-l) - zR[e”‘—u}
e (13)
’ + Zi[(l-%g)eik—l](eik—l) =0,
.fgs R " . “ 160
; where k=(8 ~1)uw, g-aO/n (ao)anlaao, and 2=1/2(nRle ), while Zp and Z;
'-:'_:: are the real and imaginary part of Z, respectively.
. In the low gain regime |Z]|<<l to lowest order Eq. (13) gives
S (¢ -1 =0
'}::.: and the frequency of the perturbation 1s also approximately that of a
,r‘i cavity mode
) w =7n (n# 0) .
:“a The growth or damping of the mode 1s determined in next order by the
.-2:’ equa t}on 3 1k 1k 1k
§GA Wt - cos8 w[(2+g)e T2l +( "-1[4+gle =11 =0,
(‘.,:‘ where ;-(e"u“’-l)/lzl with kn-mr(s*-l). Regions of stability in the k
[

Vo vs. cose0 plane are shown in Figs. (1) for different values of g. For
WY
' the equilibrium the average change 1in momentum Ap is given 1in the low

AN

y' " gain regime by,

8. Ap = - cos8]a Iz;\(]a .

‘uz.;s o' 0 0

s ' Thus, the value of cose0 determines the dependence of the efficiency on
dad]

::-; the injection momentum. The quantity g depends only on aq and is related
(XX to the derivative of the efficiency with respect to the field amplitude,
| XY Ia |
W 0' a(ap) -

N %p 3a (2 +3g) . (14)

0
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The efficlency maximizes for g=-2 and coseo=1.

The plots in Fig. (la) are periodic in k with perfod 2r (only the
fundamental period is shown). Thus, for an irrational value of (8 ,.-1),
knmod(ZN) will eventually assume any value. In the klystron model,
therefore, only equilibria with efficiency sufficiently maximized with
respect to cose0 (injection momenta) will be stable. Periodicity with
respect to k 1is an artifact of the klystron model, .and we may not expect
this result to hold more generally.

A second more lmportant restriction 1is noted by examining Fig. (lb)
where g{-2, corresponding to a field amplitude 1in equilibrium that
exceeds the value which maximizes efficiency. There it 1s seen that no
single frequency equilibria are stable.

The preceeding discussion applied in the low gain regime where both
the beam current } and transmission coefficient v=(1-R) are small. 1In
this case the stability boundaries depend only on the ratio }/v through
the field amplitude age

In the high gain regime an additional parameter measuring the
curreat is introduced, |Z|=(1/2)RI;. Stability boundaries in the
coseO - |Z|plane are shown in Fig. (2) for the high gain case. The large
triangle in the upper left is the region of parameter space allowed by
the equilibrium condition. The low gain results correspond'to the region
of the plane with small |z

. As can be seen in Fig. (2) where g>-2 the
stable operating regime occuples the small triaagle in the upper 1left.
The stable range of cose0 values decreases as current is raised. Above a
critical current no single mode operation Is possible. For g<-2 we again

find no regime where stable operation 1is possible.

IITI. MULTIMODE SIMULATIONS
We now drop the klystron model and return to the more realistic case

of a constant coupling coefricient in the interaction region,

l for 0 < g <1
0 otherwise

X(g) = {

To reduce the numhber of parameters we again assume that the beam current

and teoansmission coefficient are small and we are in the low galn regime.

A

Solution »f the wave equation in the limit I+0 will reproduce the vacuum

ERPICUCR N RITOORME FOE RSO RORMERM MO ML Ml Pt T ™ OO AN L LML PR
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fﬁn : cavity modes. Including the curreat and transmission losses will cause
[AN)
,*“' the complex amplitude of each mode to evolve slowly in time. To treat
o this problem mathematically we introduce a two time scale formulation
o, .
ng writing the field amplitude
f w [(18,)E ]

N . -T

’ *

S a,m) =] a (e ° >, (15)
Y, where 9 s the fast time 3ssociated with the time of flight of radfation

:; through the cavity, w =Tn is the frequency, and t is the slow time

v
‘*k: assoclated with the growth or decay of the modes.
b The computational savings 1s achieved because the field is nearly
?'a periodic with period ro=2. Thus, an ensemble of particles can be
b launched with ™o in the range OSTOSZ, the currents computed, and the wave
‘hf\ fields advanced by a time T of the order of the growth time. This
L .
£¢, reduction has been achieved similarly in other FEL1 and gyrotron
e simulations.5’

gj' The governing system of equations is found to be
.;..',.:
‘s
O W _(€,t,)
R g-g-m(z ae * 0, (16)
.j; n

9

‘N - | Coan
.,

:; where ¢n=¢+wn[(1'5*)5~t0] with {nitial conditions T € (0,2},
e $(0) € (0,2r], and p(0)=pinj for the particles. The wave amplitudes are
gl advanced on the time scale t
IR S
'..

o aan 1 } Wy
he, ar +ya = ()<< > (18)
A where

—

e T =TV,
K 8
Jﬁ and the double average 1s given by
3¢
oy 2n 2 dr 1

M)
i Koad> = WD 70y gy

A 0 0 0
5
fa& » A sample run {s shown in Fig. (3) where the magnitude of the amplitudes
:L : of the modes are shown at several times. The {injection momentum and
f current to damping ratlo were selected so that in the case of single mode
%ﬁ operation the n=-3 mode would be the most efficient. At early times one
ﬁf ' sees that the a=l mode grows C(astest which 13 consistent with small

)
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:5:. signal theory. As time goes by the system nonlinearly evolves toward a
!: single mode (the n=0 mode). At the time of writing of this paper the
v " code was still running so we can not report whether a final single mode
;: solution 1is reached. However, we hope to examine parameter space and
,. , determine the regimes of single mode operation in the future.
:l.
¥ IV. CONCLUSIONS
f We have outlined two models capable of describing multimode effects
ol in FEL oscillators. In the klystron model the wave field satisfies a two
time delay equation. In the low gain regime single mode operation is
‘ achlieved only at a field' value less than that which maximizes the
: efficiency and then only for modes for which the efficiency has been
E' nearly maximized with respect to mismatch. In the high gain regime the
Yot band of stable mismatch frequencies decreases as current increases. 1In
> the more reallstic distributed 1ianteraction model one must resort t6
: numerical simulation. Howéver, the computation time and parameter space
“_‘: can be greatly reduced in the low gain regime.
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Fig. 1.

Fig. 2.

Fig. 3.

FIGURE CAPTIONS

Stability regions in the low gain regime in cose0 versus k =
nm (8 -1) plane: (a) g = - 1.95, (b) g = -2.01.

Stab}l}ty reglions in the high gain regime in cose0 versus 2 =
1/2(IR) plane.

Sample of the multimode simulation with 21 modes,

B* a 1.2, (}/v) = 112.74, and Pinj = 3,258; (a)

L 1.2; (b) T, = 4.8; (¢) T, 18; (d) T 74.4.
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